adventofcode2023/17/pseudo

57 lines
1.3 KiB
Plaintext
Raw Normal View History

2023-12-17 19:45:57 -06:00
Graph.Edges(u@dir, v@dir) {
; if cost(v) = 0xff, we're off graph,
; in the padded area
Graph.Edges := cost(v)
}
v@dir(u, dir) {
v.dir := dir
tmp := 1
bt dir, 3
if CF
tmp := LINE_LEN
bt dir, 2
if CF
tmp := -tmp
v := u + tmp
}
neighbors(u@dir) {
; can always turn
neighbors += v@dir(u, ~u.dir & 0b1000)
neighbors += v@dir(u, (~u.dir & 0b1000) | 0b0100)
; can go forward if consec < 3
if u.dir & 0b0011 < 3
neighbors += v@dir(u, u.dir + 1)
}
; 12 possibilities, use 16 so we can do bit hacks
; 0000 0001 0010 0011 0100 0101 0110 0111
; 0 1 2 3 4 5 6 7
dir = { R1, R2, R3, XX, L1, L2, L3, XX,
; 1000 1001 1010 1011 1100 1101 1110 1111
; 8 9 10 11 12 13 14 15
D1, D2, D3, XX, U1, U2, U3, XX}
dist[(x,y),dir]
prev[(x,y),dir]
q[(x,y),dir]
for each vertex v in Graph.Vertices:
dist[v] ← INFINITY
prev[v] ← UNDEFINED
add v to Q
for all real dir:
dist[source@dir] ← 0
while Q is not empty and any dist[u] in Q < inf:
u ← vertex in Q with min dist[u]
remove u from Q
for each neighbor v of u still in Q:
alt ← dist[u] + Graph.Edges(u, v)
if alt < dist[v]:
dist[v] ← alt
prev[v] ← u
done